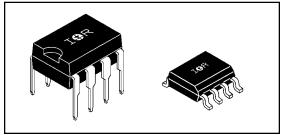
SELF-OSCILLATING HALF-BRIDGE DRIVER

Features

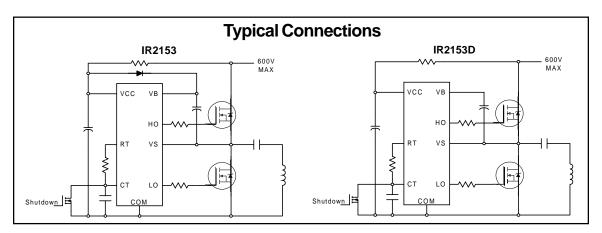
- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- Undervoltage lockout
- Programmable oscillator frequency

$$f = \frac{1}{1.4 \times (R_{T} + 75\Omega) \times C_{T}}$$

- Matched propagation delay for both channels
- Micropower supply startup current of 90 μA.
- Shutdown function turns off both channels
- Low side output in phase with R_T
- IR2153D has built in bootstrap diode


Description

The IR2153/IR2153D is a high voltage, high speed, self-oscillating power MOSFET and IGBT driver with both high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The front end features a programmable oscillator which is similar to the 555 timer. The output drivers feature a high pulse current buffer stage and an internal deadtime designed for minimum driver cross-conduction. Propagation delays for the two channels are


Product Summary

VOFFSET	600V max.
Duty Cycle	50%
lo+/-	200 mA / 400 mA
V clamp	15.6V
Deadtime (typ.)	1.2 μs

Packages

matched to simplify use in 50% duty cycle applications. The floating channel can be used to drive an Nchannel power MOSFET or IGBT in the high side configuration that operates off a high voltage rail up to 600 volts. In IR2153D a bootstrap diode is included.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

		Va			
Symbol	Definition		Min.	Max.	Units
VB	High Side Floating Supply Voltage		-0.3	625	
VS	High Side Floating Supply Offset Voltage		V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B +0.3	v
VLO	Low Side Output Voltage		-0.3	V _{CC} + 0.3	
V _{RT}	R _T Voltage		-0.3	V _{CC} + 0.3	
V _{CT}	C _T Voltage		-0.3	V _{CC} +0.3	
ICC	Supply Current (Note 1)		—	25	mA
I _{RT}	R _T Output Current		-5	5	
dV _s /dt	Allowable Offset Supply Voltage Transient		—	50	V/ns
PD	Package Power Dissipation @ $T_A \le +25^{\circ}C$	(8 Lead DIP)	—	1.0	w
		(8 Lead SOIC)	_	0.625	VV
Rth _{JA}	Thermal Resistance, Junction to Ambient	(8 Lead DIP)	—	125	°C/W
		—	200	0/11	
Tj	Junction Temperature		—	150	
Τ _S	Storage Temperature		-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)		—	300	

Recommended Operating Conditions

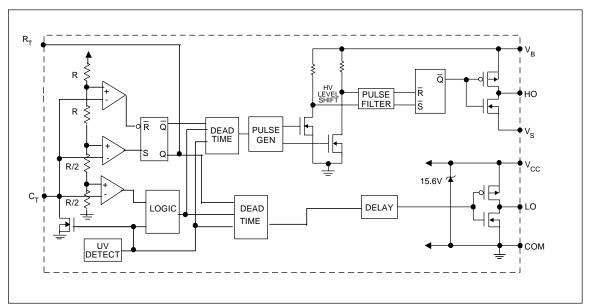
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

	Value			
Symbol	Definition	Min.	Max.	Units
VB	High Side Floating Supply Absolute Voltage	V _S + 10	V _S + 20	
Vs	High Side Floating Supply Offset Voltage	—	600	
V _{HO}	High Side Floating Output Voltage	VS	V VB	
VLO	Low Side Output Voltage	0	Vcc	
Icc	Supply Current (Note 1)	_	5	mA
TA	Ambient Temperature	-40	125	°C

Note 1: Because of the IR2153's application specificity toward off-line supply systems, this IC contains a zener clamp structure between the chip V_{CC} and COM which has a nominal breakdown voltage of 15.6V. Therefore, the IC supply voltage is normally derived by forcing current into the supply lead (typically by means of a high value resistor connected between the chip V_{CC} and the rectified line voltage and a local decoupling capacitor from V_{CC} to COM) and allowing the internal zener clamp circuit to determine the nominal supply voltage. Therefore, this circuit should not be driven by a DC, low impedance power source of greater than V_{CLAMP}.

Dynamic Electrical Characteristics

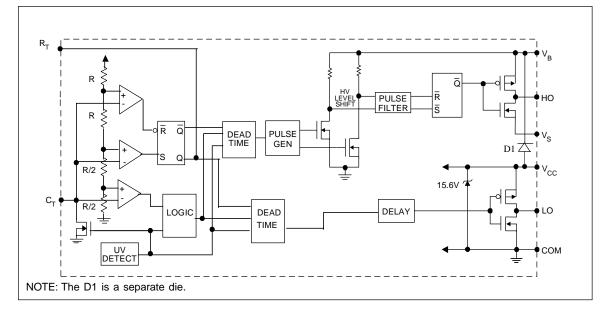
 V_{BIAS} (V_{CC}, V_{BS}) = 12V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.


		Value				
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _r	Turn-On Rise Time	_	80	—		
t _f	Turn-Off Fall Time	—	35	—	ns	
t _{sd}	Shutdown Propagation Delay	—	660	—		
DT	Deadtime	_	1.2	—	μs	
D	R _T Duty Cycle	—	50	_	%	

Static Electrical Characteristics

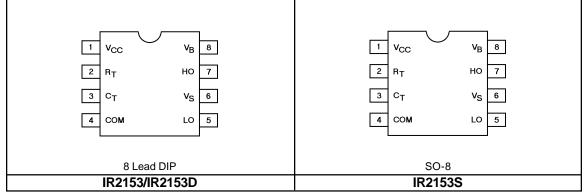
 V_{BIAS} (V_{CC}, V_{BS}) = 12V, C_L = 1000 pF, C_T = 1 nF and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

			Value			
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
fosc	Oscillator Frequency		20.0	—	kHz	R _T = 35.7 kΩ
		_	100	—	КПД	R _T = 7.04 kΩ
V _{CLAMP}	V _{CC} Zener Shunt Clamp Voltage	—	15.6	—		I _{CC} = 5 mA
V _{CT+}	2/3 V _{CC} Threshold	-	8.0	-	v	
V _{CT-}	1/3 V _{CC} Threshold	-	4.0	—	v	
V _{CTSD}	C _T shutdown Input Threshold	—	2.2	-		
V _{RT+}	R_T High Level Output Voltage, V _{CC} - R_T		0	100		I _{RT} = -100 μA
		—	200	300		I _{RT} = -1 mA
V _{RT-}	R _T Low Level Output Voltage	—	20	50		I _{RT} = 100 μA
		—	200	300	mV	I _{RT} = 1 mA
V _{OH}	High Level Output Voltage, V _{BIAS} - V _O		—	100	IIIV	I _O = 0A
V _{OL}	Low Level Output Voltage, V _O	—	—	100		I _O = 0A
I _{LK}	Offset Supply Leakage Current	-	-	50		$V_B = V_S = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current		10	-		
IQCCUV	Micropower V _{CC} Supply Startup Current	-	90	-	μA	V _{CC} < V _{CCUV}
I _{QCC}	Quiescent V _{CC} Supply Current	-	400	-		$V_{CC} > V_{CCUV}$
I _{CT}	C _T Input Current	-	0.001	1.0		
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going		9.0	-		
	Threshold				V	
V _{CCUV-}	V _{CC} Supply Undervoltage Negative Going		8.0	-		
	Threshold					
V _{CCUVH}	V _{CC} Supply Undervoltage Lockout Hysteresis		1.0	-	V	
I _{O+}	Output High Short Circuit Pulsed Current	—	200	-	mA	$V_{O} = 0V$
I _{О-}	Output Low Short Circuit Pulsed Current	_	400	-		V _O = 15V


IR2153/IR2153D Functional Block Diagram for IR2153

International

TOR Rectifier


Functional Block Diagram for IR2153D

Lead Definitions

Le	Lead					
Symbol	Description					
RT	Oscillator timing resistor input, in phase with HO for normal IC operation					
CT	Oscillator timing capacitor input, the oscillator frequency according to the following equation:					
	$f = \frac{1}{1.4 \times (R_{T} + 75\Omega) \times C_{T}}$					
	where 75Ω is the effective impedance of the R _T output stage					
VB	High side floating supply					
HO	High side gate drive output					
VS	High side floating supply return					
V _{CC}	Low side and logic fixed supply					
LO	Low side gate drive output					
COM	Low side return					

Lead Assignments

NOTE: The IR2153D is offered in 8 lead DIP only.

Device Information

Process & De	sign Rule		HVDCMOS 4.0 µm		
Transistor Count			231		
Die Size			68 X 101 X 26 (mil)		
Die Outline					
Thickness of (Gate Oxide		800Å		
Connections		Material	Poly Silicon		
I	First	Width	5 µm		
I	_ayer	Spacing	6 µm		
_		Thickness	5000Å		
		Material	Al - Si - Cu (Si: 1.0%, Cu: 0.5%)		
:	Second	Width	6 µm		
I	_ayer	Spacing	9 µm		
		Thickness	20,000Å		
Contact Hole	Dimension		5 µm X 5 µm		
Insulation Lay	er	Material	PSG (SiO ₂)		
		Thickness	1.7 µm		
Passivation		Material	PSG (SiO ₂)		
		Thickness	1.7 µm		
Method of Sav	N		Full Cut		
Method of Die			Ablebond 84 - 1		
Wire Bond		Method	Thermo Sonic		
		Material	Au (1.0 mil / 1.3 mil)		
Leadframe		Material	Cu		
		Die Area	Ag		
		Lead Plating	Pb : Sn (37 : 63)		
Package		Types	8 Lead PDIP / SO-8		
. conago		Materials	EME6300 / MP150 / MP190		
Remarks:					

International

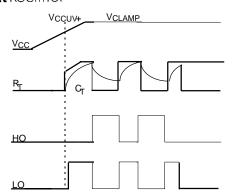


Figure 1. Input/Output Timing Diagram

IR2153/IR2153D

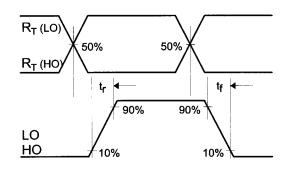


Figure 2. Switching Time Waveform Definitions

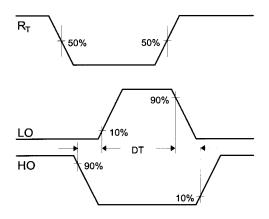
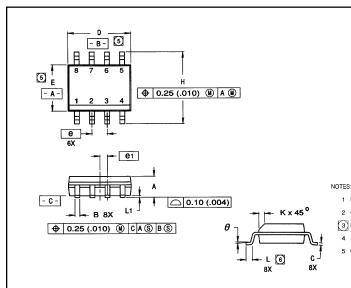
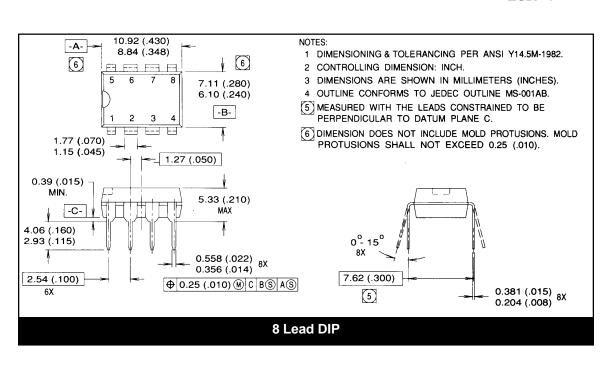



Figure 3. Deadtime Waveform Definitions



5 OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.

- 4 DIMENSIONS SHOWN IN MILLIMETERS (INCHES).
- 3 DIMENSIONS DO NOT INCLUDE MOLD FLASH.
- 2 CONTROLLING DIMENSION: INCH.

1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.

	INC	HES	MILLIM	ETERS	
DIM	DIM MIN MA		MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
В	.014	.018	0.36	0.46	
С	.0075	.0098	0.19	0.25	
D	D .189 E .150		4.80	4.98	
Е			3.81	3.99	
e	.050 E	BASIC	1.27 BASIC		
e1	.025 E	.025 BASIC		BASIC	
н	H .2284 .244		5.80	6.20	
К	.011	.019	0.28	0.48	
L	.016	.050	0.41	1.27	
θ 0°		8°	0°	8°	

IR2153/IR2153D

International

International **ICR** Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: 171 (K&H Bldg.), 30-4 Nishi-ikebukuro 3-Chome, Toshima-ku, Tokyo Japan Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 1/97